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Abstract. Bioinformatics applications manage complex biological data
stored into distributed and often heterogeneous databases and require
large computing power. Among these, protein structure comparison ap-
plications exhibit complex workflow structure, access different databases,
require high computing power. Thus they could benefit of semantic mod-
elling and Grid infrastructure. We present the modelling and develop-
ment of the PROuST structure comparison application on the Grid using
PROTEUS, a Grid-based Problem Solving Environment.

1 Introduction

Research in biological and medical areas (also known as biomedicine), requires
high performance computing power and sophisticated software tools to treat
the increasing amount of data derived by always more accurate experiments in
biomedicine [1]. The emerging bioinformatics area involves an increasing number
of computer scientists studying new algorithms and designing powerful compu-
tational platforms to bring computer science in biomedical research.

Among the different interests, bioinformatics is focusing on the study of pro-
teins and their biological functions. Proteins are sequences of amino acids, rep-
resented by strings. Amino acids sequences fold in three dimensional (3D) space
assuming a variety of 3D structures. Since the structure of a protein is highly
related to its functionality, knowing the amino acids sequence as well as its 3D
space conformation helps biologist in predicting protein functionalities [11]. The
high number of possible combinations of amino acids composing proteins, as well
as the huge number of possible cell-mutations, require a huge effort in designing
software environments and architectures able to manage the huge amount of
data and to support protein studies. Proteins spatial structure prediction and
folding are important issues for studying pathologies and to design new drugs.

For such reasons research communities are interested in studying existing
proteins functionalities and in discovering new ones. Databases accessible to such
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communities have been designed and populated (see Protein Database, PDB
[8]) and algorithms for analyzing and comparing proteins have been designed.
Such algorithms have to deal both with string representations, i.e. amino acids
sequences, and with their 3D structures. In particular, the structural comparison
problem plays an important role in the functional classification of known proteins
and in the prediction of the function of new ones. Recently, a new approach, named
PROuST [4] has been proposed. It combines and integrates different techniques
for structure comparison operating at different levels of protein representation
with different degrees of accuracy. Comparison techniques need to interact with
huge amount of data, requiring high computational efforts. PROuST compares an
input query protein with a data set of known proteins, to obtain the 3D protein
shapes most similar to the query protein. It works in two phases. First it stores
information about the existing proteins in a hash table indexed by invariant
properties of the protein structures. These properties are the angles and distances
of triplets of segments associated to the secondary structures of the proteins. Then,
for a given query protein, the algorithm computes the same invariant features
and uses them to access the hash table and retrieve similarity information with
the existing proteins. This fist step of the processing generates a list of candidate
similar proteins. Next a dynamic programming approach is used to align the query
protein with each candidate protein of the obtained list. A snapshot of the protein
structural comparison workflow is reported in Figure 1. The protein structures
are obtained from publicly available databases, i.e. from the Protein Data Bank
that currently contains over 27,000 different structures. Thus, building indexes
and evaluating a set of candidate proteins is a computationally intensive problem.

Grid community [9] recognized bioinformatics as an opportunity for dis-
tributed high performance computing and collaborative applications. Compu-
tational Grids (or simply Grids) are geographically distributed environments for
high performance computation [10]. In a Grid environment is possible to man-
age heterogeneous and independent computational resources offering powerful
services able to manage huge volumes of data. Managing heterogeneous datasets
(e.g., protein databases) or creating new datasets (e.g., mass spectrometry pro-
teomic data [7]), may take advantages by Grid environment [12].

In this paper we present the modelling and the implementation of the PROuST
protein structure comparison application on the Grid, using the PROTEUS [2]
Grid-based Problem Solving Environment. Migrating PROuST on Grid platform
has been proposed in [6]. PROTEUS allows to design and model bioinformatics
applications on Grid, using ontologies for modelling, and workflow techniques for
designing and scheduling. In particular PROTEUS embeds an ontology based
workflow designer allowing ontology-based design of the application. Moreover, a
set ofworkflowengines allows controlling andenactingdifferentphases of activities.

The paper is organized as follows. Section 2 presents PROTEUS architec-
ture focusing on workflow management and modelling. Section 3 describes the
PROuST structure comparison method and Section 4 presents the definition
of PROuST application on PROTEUS through workflow modeling. Section 5
concludes the paper and outlines future works.
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Fig. 1. PROuST Overall Workflow

2 Workflow Management in Proteus

Semantic modelling of Grid resources and workflow-based Grid programming
are emergent trends in Grid community [3]. Along this direction, we developed
PROTEUS, a Grid-based Problem Solving Environment allowing to model and
execute Grid-aware bioinformatics applications through ontologies and work-
flows. Figure 2 shows main components of PROTEUS architecture.

The Component and Application Library contains software tools, databases,
data sources, and user-defined bioinformatics applications, whose metadata are
contained into the Metadata Repository. The Ontology Repository contains on-
tologies describing, respectively, biological concepts, bioinformatics tasks, and
user-defined bioinformatics applications, represented as workflows. The Ontology-
based Workflow Designer allows the design of a bioinformatics application as a
workflow of software and data components selected by searching PROTEUS on-
tologies. It comprises the Ontology-based Assistant, that suggests available tools
for a given bioinformatics problem, and the Workflow User Interface, used to pro-
duce workflow schema, stored into the Workflow Metadata Repository. Finally,
the WF-model Wrapper maps an abstract workflow schema into a schedulable
workflow, that in turn is scheduled (i.e. enacted) on the Grid by the Workflow
Engine.

While deploying bioinformatics applications, particular attention should be
devoted to the modelling phase; in this phase, in fact, the actors of the ap-
plication as well as the way in which they operate to reach their goals must
be described. From a conceptual point of view, such a description is equivalent
to build a workflow model, i.e., a formal description of the tasks to be carried
out, the dependencies/relationships among them (e.g. data flow, temporal prece-
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Fig. 2. Proteus Architecture

dences) and the entities involved in the application/process. Our proposal is to
use workflow capabilities of PROTEUS in order to support users in the design
of complex applications and in deploying experiments in an automatic manner.
There are many reasons supporting this choice. First, as the design phase serves
as the basis for the deployment, it is clear that correctness of the experiment
specifications should be guarantied before the deployment phase, unless to bear
the costs of doing so at implementation level. Workflow technology offers Process
definition tools that allow the user to specify a process/application in a formal
and unambiguous manner, according to some formal specification language.

Workflow technology offers several more intuitive graphical user-interfaces
to specify bioinformatics applications, thus allowing the users to encode their
knowledge without caring of implementation details.

Finally, it is generally recognized that supporting the design phase of an
applications is a prerequisite for achieving the benefits with respect to maintain-
ability, comprehensibility and reusability of the applications, which are crucial
issues in the bioinformatic domain.

2.1 Basic Workflow Concepts

Aworkflow is a partial or total automation of a business/scientific process, inwhich
a collection of activities must be executed by some entities (humans or machines),
according to certain procedural rules. In this context, Workflow Management
Systems (WfMSs) are well established technological infrastructures, aiming at
facilitatingthedesignofanyworkflow,andsupportingitsenactments,byscheduling
different activities on available entities. According to the Workflow Management
Coalition (WfMC) Reference Model (see http://www.wfmc.org), the two most
relevant components ofWfMSsare:Buildtimecomponent andRuntimecomponent.

Buildtime Component allows the definition of the workflow by means of
some formal description such as the workflow schema, and ensures its persistent
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storage. It includes two level of specification: (i) control flow level, specifying the
dependencies among tasks and their execution requirements, through language
constructs (e.g. sequencing, synchronization, choice, etc); (ii) data flow level,
specifying the information about processing entities, such as activity assignment,
input and output parameters, etc.

Runtime Component consists of a workflow engine (often called workflow
scheduler) responsible of the enactments, by controlling and coordinating exe-
cution of activities. Moreover, it stores log files about workflow executions and
provides monitoring tools that keep track of execution progress.

2.2 Conceptual Workflow Modelling by Using UML

Many research works deal with the modeling of workflow schemes and currently
there are many existing workflow languages, such as Xlang, WSFL, and BPEL
from Microsoft and IBM; XPDL from the workflow management coalition; UML
extensions and EDOC from the OMG; and WSCI, which is under the umbrella
of the W3C, since no such languages is considered the “best” standard. In PRO-
TEUS we use the UML activity diagrams as a workflow language specification.
The Unified Modelling Language (UML) is a de-facto industry standard consist-
ing of several graphical languages for representing software system designs and
it is frequently used to illustrate processes in software applications. Recently,
the activity diagrams are useful for modelling workflow specifications [5]. In par-
ticular, several works have demonstrated that UML supports the majority of
the control flow constructs and is suitable to modelling the most of recurring
situations related to the workflow execution.

Activity diagrams notation describes activities and the flow between them,
which is determined by transitions, forking, synchronization elements, and flow
directions notations, such decision diamonds. Figure 3 shows the basic notation
for activities nodes; solid arrows represent control flow transitions; decisions are
diamonds and forks and synchronization are expressed by solid bars.

A A

Atomic node Compound node Fork Join decision/merge start final

Fig. 3. Graphical Notation for UML Activity Diagrams

3 Protein Structure Comparison: The PRoUST
Approach

The structural comparison problem plays an important role in the functional
classification of known proteins and in the prediction of the function of new
ones. This problem has been studied by several research groups using a vari-
ety of techniques including dynamic programming, graph algorithms, minimiza-
tion of distance matrices, etc. Moreover some approaches have led to the design
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and implementation of web servers, such as DALI, CE, SSAP and VAST (see
http://www.ebi.ac.uk/dali, http://cl.sdc.ede/ce.html, http://www.biochem.ucl.
ac.uk/orengo/ssap.html, and www. ncbi.nlm.nih.gov). Recently, a new approach,
namely PROuST, has been proposed [4], that combines and integrates different
techniques to structure comparison operating at different levels of protein rep-
resentation with different degrees of accuracy. PROuST consists of many com-
putational components. The computational modules that can be arranged in
various ways depending on the specific type of the requested task: a protein can
be matched against all the proteins in PDB, or against a list of representative
proteins selected from PDB (for instance, choosing only proteins with low degree
of sequence similarity), or it can be compared with another protein to obtain an
alignment of their structural elements. Moreover, a display of the aligned pro-
teins can be obtained at the level of the secondary structures only, or extended
to a subset of the atoms, the Cα backbone atoms or to all atoms.

Basically, PROuST design relies on two main techniques: it uses indexing for
a fast retrieval of similarity information from a database of protein substructure
features, followed by dynamic programming to obtain an accurate comparison and
alignment between the query protein and each of the proteins extracted from the
database by the fast index-based search. Indexes are derived from the segments
associated to the secondary structure of Proteins, i.e. α-helices and β-strands.
Recent comparisons of PROuST with stand alone procedures have demonstrated
its efficiency. Moreover in [6] a possible immersion of PROuST on a Grid based
environment has been proposed. Since PROTEUS offers a workflow management
platform for workflow design and execution on Grid (see Figure 2), after presenting
the overall PROuST workflow, we describe its design on PROTEUS.

We now review how PROuST works. More details can be found in [4]. Besides
its atomic representation (as a list of 3D coordinates of all its atoms), a protein
can be described in terms of its secondary structures (α-helices and β-strands).
Our approach represents each protein as a set of vectors associated to secondary
structures; the vectors are the best fit line segments for β-strands and the axes of
α-helices. PROuST is based on indexing techniques for database access and fast
similarity search. It computes angular features of triplets of segments associated
to secondary structures. These features generate triplets of numbers that provide
indexes to specific locations in an Hash Table (HT). Each table cell (bucket)
consists of a list of records corresponding to proteins with one or more triplets
of secondary structures that index into that cell. The Hash Table is built in a
pre-processing phase that inserts all proteins and takes O(n3) time for the
insertion of a protein with n secondary structures.

The similarity search problem involves a query protein Q and all the
other proteins represented in the hash table. The search procedure accesses the
database looking for triplets of secondary structures that are similar to those of
Q, that is triplets with similar angles and distances between their vectors.

Proteins similar to Q are selected according to a similarity measure that takes
into account the number of similar triplets between the two proteins. For each
triplet of segments associated to the secondary structures of Q, the related three
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dihedral angles are computed and used as indexes to a table cell. All similar
triplets of all stored proteins are stored in either that same cell or in adjacent
cells. For each protein in the database, the search procedure keeps track of the
number of triplets that are found similar to triplets of the query protein Q by
incrementing for each access in a given cell a proper counter associated to that
protein. After all triplets of Q have been examined, the proteins with the largest
value of such counter are selected as the ones most similar to Q. The indexing
method described above returns a ranking of candidate similar proteins but does
not generate an alignment of secondary structures and atoms of the query protein
with each of the candidate proteins.

The structural alignment procedure based on dynamic programming gen-
erates pairs of corresponding secondary structures and atoms of the two proteins
that satisfy the continuity constraint given by the order of secondary structures
along the sequence. The alignment optimizes a function based on the score be-
tween two secondary structures defined in terms of the number of similar triplets.
The score is derived from the Hash Table (HT).

The final stage of the protein structure comparison is the superposition of the
two proteins, that is the determination of the rigid transformation that results in
the ”best” overlap of the two proteins. Horn’s algorithm is used to determine the
optimal transformation that minimizes the Root Mean Square deviation (RMSD)
distance between sets of atoms (pairs of corresponding points of two proteins).

4 Designing PROuST Application on PROTEUS

Currently PROuST is implemented as a stand alone application, so we wish
to implement it by using a service-oriented approach. The main phases of the
application have to be made independent by each others and implemented as
autonomous software components, able to fulfill requests coming by different
users, or triggered by external events.

Taking a bottom-up approach, we first model with PROTEUS the inner
workflow schema of each PROuST phase (that represents a service), such sub-
workflows are then combined to obtain the overall application. The description
of workflows is carried out by means of the UML syntax introduced before. Note
that activity diagrams specify not only the control flow, but also the data flow.
This is an important feature because to enact a process, a WfMS needs to know
which activity to call next and what data the activity needs. UML class diagrams
can be used to describe the internal structure of data objects. In the following,
the main phases of the PROuST application (Pre-processing, Similarity search
and Structural alignment) are described as UML activity diagrams.

Pre-processing. This phase is represented as the activity diagram of Figure 4
where UML data flow (dashed arrows) is the connection of data objects with
activities that require them as input and/or produce them as output. The input of
this phase, the PDB file, is processed to obtain an internal protein representation
allowing an accurate and efficient protein comparison. In some cases the DSSP
database can be queried to obtain information about the secondary structures of
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a protein if it is not present in the PDB file. The output of this phase is the Hash
Table (HT ) introduced above. This phase is executed once, when the system starts
up and whenever updates affect the PDB. From a computational point of view,
Pre-processing is triggered by relevant updates in PDB, or by timeout expiration
(e.g. each month), or by user action. Hash Table updating can be obtained by
(incrementally) applying the Pre-processing phase on a local copy of the updated
PDB file, or by using an agent-based system to periodically report PDB updating.
A structured relational database allows to enhance the Pre-processing phase. In
summarythePre-processingphasehasINPUT={PDB,DSSP},OUTPUT={HT}.

As reported in the workflow of Figure 4, the preprocessing phase starts by
accessing the PDB file (“PDB access” task). If PDB contains the secondary
structure of a protein the task “Compute SS from PDB” is executed; otherwise,
the DSSP file is used for its extraction (“Compute SS from DSSP” task). However,
if the secondary structure is not available in any databases, the current PDB file is
no more processed and the workflow returns in the starting activity. The secondary
structure of a protein results in a couple of files representing its starting and ending
residua (file .sec) and the coordinates of the carbon atoms (file .ca). They are
the input of the task “Vectorial representation” that computes a representation
(file .fit) of the secondary structure stored in the Hash Table (task “Hash table
update”). Specifically, two possible updates might occur: (1) the insertion of a
new protein, and (2) the insertion of a new version of an existing protein.

Similarity Search. In this phase (Figure 5), a target protein P , identified
through its PDB identifier (e.g. 1tim is the <pdbID> of the protein Tim barrel),
is compared against all the proteins contained in HT to obtain a list of similar
proteins LS , according to a similarity measure S.

PDB
Access

Processing
PDB

DSSP
Access Vectorial

representation

Update
Hash Table

[not

contain ]

Processing
DSSP[contain SS]

[not contain]

[not

complited] [complited]

Protein

FormatResult::
files .pdb

[contain SS]

FormatResult::
files .dssp

DataStructure
Hash Table

FormatResult::
files sec, ca

FormatResult::
file .fit

Fig. 4. Activity Diagram for the Pre-processing Phase
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[null]

Query
HashTable

:

Search
protein DB

Update
format

[found]

Query
Parsing

Similarity
analysis

FormatResult :
file .Pdb

Protein:
Target

DataStructure :
Hash Table

FormatResult
file .fit

DataStructure
List Similarity

Fig. 5. Activity Diagram for the Similarity Search Phase

Each element of LS contains a similar protein identified through its <pdbID>,
and a value representing the similarity measure S with respect to the target pro-
tein P . Without loss of generality we can order the list LS according to the simi-
larity measure, and choose the sub list Lk

S containing the first k similar proteins,
where k is a parameter provided by the user on the basis of his/her experience.
Notice that similarity search is conducted against all the proteins stored in HT,
so the parameter k is only a way to select the useful output for this phase but does
not affect complexity or efficiency of the similarity search phase. The value of k
may eventually be determined dynamically on the basis of a required minimum
similarity threshold t, i.e. we could search for the first k = k(t) similar proteins
whose similarity measure is greater than t. Finally, since similarity search is con-
ducted comparing vector-based representation of proteins, the target protein P
has to be pre-processed by a parser module. In summary, Similarity search phase
has INPUT={P, HT}, PARAMETERS={k}, OUTPUT={LK

S }.
As reported in the workflow of Figure 5, this phase starts by supplying a

target protein P= <pdbID> used to query the PDB file to obtain the secondary
structure protein information (task “Search protein”). In case the target protein
is not stored in a PDB format, the task “Update format” is responsible of deriving
the PDB information. Then, in the “Query parsing” task the file .fit is generated.
Such file is needed for the “Similarity analysis” task. Which, in fact, computes a
list of proteins sorted according to their degree of secondary structural similarity
with the target protein.

Structural Alignment. In this phase (Figure 6) a detailed similarity analysis
is performed by considering the position of atoms of target and similar proteins.
The user chooses a protein Li (i=1,...,k) from the similarity list Lk

S , then a
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Protein
selection

Search format
Pi and PT

Fit extraction
Pi and PT

SS
alignment

Rigid
transformation

Rasmol
visualization

Protein :PT
DataStructure :
List Similarity

Query Result : Pi

FormatResult
Files sec, ca,pdb

FormatResult
files .fit

DataStructure
ListAssociation

FormatResult :

coord.Atomic
superposition

Fig. 6. Activity Diagram for the Structural Alignment Phase

structural alignment between Li and the target P is performed. Next an atomic
superimposition of these two proteins, based on a rigid transformation composed
by roto-translation movements, is performed.

Finally,thissuperimpositioncanbeeventuallyvisualizedusinga3Dvisualization
tool such as Rasmol ( see http://www.umass.edu/microbio/rasmol/). It should be
noted that both Li and P are visualized with respect to the same point of reference.
After visualization the user can choose another similar protein Lj, to conduct a
new Similarity analysis, or he/she can stop the process. In summary the Similarity
analysis phase has INPUT={P,Li }, OUTPUT={superimposition (P, Li)}.

As reported in the workflow of Figure 6, a protein occurring in the similarity
list is selected (task “Protein selection”) for testing its actual structural similar-
ity with the target protein on the basis of the degree of atoms overlapping. This
measure is obtained by computing the rigid transformation of the proteins that
makes their structures overlap as much as possible.

This task can be performed by analyzing not only the PDB, .sec, .ca files (task
“Files extraction”) associated to both proteins, but also an association list between
the secondary structures. This list is computed from the .fit files (obtained by
means of the task “Fit extraction”), by means of the task (“SS alignment”).

Notice that the tasks ”SS alignment” and “Files extraction” are synchronized
in a way that the “Rigid Transformation” task can be executed only after their
proper termination. Finally, the overlapping can be visualized by means of a
visualization tool, such as Rasmol.

After the application modelling phase, the workflows designed so far, stored
into the Workflow Metadata Repository of PROTEUS, are combined together
to form the overall Grid-aware PROuST application. Using the PROTEUS
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workflow-enactment service, the application is then executed on the Grid. On
the other hand, some of the designed workflows represent self-contained services
that can be reused for further applications.

5 Conclusions and Future Work

Bioinformatics applications, such as structure comparison, present complex work-
flows that involve different data sources and software components, and often re-
quire high computing power. The deployment of such applications on the Grid
can benefit from semantic modelling of both the elementary tasks and the overall
application through workflow. We described the modelling and implementation
of the PROuST structure comparison application through PROTEUS, a Grid-
based Problem Solving Environment. Detailed descriptions of PROuST phases
and related PROTEUS workflows have been presented.

Future work regards the completion of the PROTEUS workflow-enactment
service and its use to evaluate the Grid-aware PROuST application. Moreover,
PROuST workflow shows various sources of parallelism that can further benefit
of Grid deployment, such as Hash Table construction and querying, and parallel
execution of PROuST phases in a multi-user setting.
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